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Abstract—A buckling criterion for shells with an axisymmetric middle surface and subjected to edge loads
and hydrostatic surface pressure loading is formulated starting from Hill's three-dimensional continuum
theory for uniqueness of deformation of inelastic solids. It turns out that a physically consistent
two-dimensional set of equations may be derived for a quite general class of strain-hardening elastic-plastic
solids, the only essential restriction being that of a smooth yield function. The intrinsic errors inherent in the
derived rate equations, being an integral part of an eigenvalue problem, are discussed in relation to a circular
cylinder under axial compression. Analytical results are given which illustrate the influence of the
constitutive properties and the boundary contraints on the magnitude of the critical load.

INTRODUCTION

The occurrence of bifurcations at loading of shells exhibiting elastic-plastic behaviour has
received increasing attention during past years. Suffice it to mention in this context, among other
important contributions, the analytical cylinder studies by Batterman(1, 2] and Ariaratnam and
Dubey[3] together with the recent more general numerical approach by Bushnell[4]. Through the
method worked out by Bushnell buckling problems may be successfully solved for perfect shells
of revolution in which during steady loading the principal stress directions coincide with the
meridional and longitudinal directions, the material behaviour then being described by aid of an
isotropic J-theory, with an option for a free choice of the ‘in-plane’ shear modulus though.
Among other features such limitations are not inherent in the present analytical attempt.

When dealing with inelastic solids boundary value problems must necessarily be set as rate
problems due to the deformation history dependence of the instantaneous mechanical material
properties. Instead of pursuing the direct method of deriving rate equations based solely on the
kinematics of the middle surface through a common shell approach, in the present case Hill’s
three-dimensional continuum theory for uniqueness of deformation has been adopted as a
starting-point. The rate equations and associated natural boundary conditions may then be
derived from a three-dimensional variational principle valid for particular solids. An obvious
advantage of this approach, when dealing with complicated problems, is the proved existence of
an associated Rayleigh principle which under some circumstances provides the possibility of
obtaining upper bounds for critical load parameters.

The derivation of a variational principle applicable to buckling of thin shells from a
three-dimensional theory is by no means an automatic procedure which is recognized by anyone
familiar with the line of progress of elastic shell theory. Through fundamental studies by a
number of distinguished writers, summarized, e.g. in [5], theories now exist which are consistent
for finite deformations of thin elastic shells. By introducing middle surface strains and curvature
changes as basic and sole kinematical variables, equilibrium equations and dynamic boundary
conditions for conjugate stress resultants and stress couples may be derived by aid of the
principle of virtual work. The equations generated from these theories may be regarded as exact
in an asymptotic sense at least for shells with constitutive properties which are homogeneous
through the shell wall and of plane isotropy.

The situation is more complicated for a shell in a strain-hardening plastic state and
particularly when the fundamental stress state is not a membrane state and the shell material
hardening properties are not even locally homogeneous. It remains in doubt still whether the
introduction of common, in some sense simple, kinematical assumptions will yield results correct
to first order in the thin-shell limit. There exists, however, a class of practically important
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problems where the variation of curvature is smooth and the boundary conditions are such that
essentially a membrane stress state prevails in the steady state. The search for bifurcations in
such situations then reduces to the solution of a two-dimensional hypo-elastic (anisotropic) rate
problem.

Hill's theorems have been earlier applied with success mostly to beam and plate problems and
in the former case it proved possible to account for the effect of shear stiffening when
investigating the buckling load of an elastic-plastic column [6]. It would seem of interest therefore
to investigate the structure of the shell equations generated by means of a simple
two-dimensional specialization retaining some degree of generality. A corresponding success as
in plate problems may not be taken for granted though.

GENERAL BIFURCATION THEORY

During a substantial time period starting in the middle of the fifties many aspects of the rate
problem occurring at finite deformation of solids of quite general material properties and
subjected to a diversity of boundary conditions have been studied by Hill. These efforts have
resulted in powerful extremum and variational principles and uniqueness and stability criteria. In
a recent review in parts by Sewell[7] a complete bibliography has been listed and generalizations
offered for the case of singular yield functions. Only a short account of the main results applicable
in the present context is given here.

When formulating the boundary value rate problem it is assumed that all relevant details
regarding the mechanical state is known at a generic stage of the deformation process. It is then
convenient to choose as a reference configuration the one prevailing when the continuum is
investigated for uniqueness of continued quasi-static motion. By aid of the contravariant
components s of the nominal (first Piola—Kirchhoff) stress tensor the equilibrium conditions for
continued motion takes the simple form

$9,=0 )

referred to convected coordinates. A superposed dot denotes material derivation with respect to
any parameter t (say), which increases monotonically with time and a comma denotes covariant
derivation with respect to the metric in the reference configuration.

The nominal stress-rate is then related to the more familiar Cauchy stress-rate through the
standard formula

. ij
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where v; are particle velocities.

An appropriate formulation of the constitutive properties of strain-hardening elastic-plastic
solids is a matter permanently subjected to theoretical and experimental studies. Fortunately, at
least from a formal view-point, for the present purpose only the instantaneous material behaviour
is of interest and it is sufficient to assume that at a generic instant, whatever its general form may
be, the constitutive equation may be expressed in the classical rate form

6 .
d; = (Mijkl +Z ﬂijﬂkl)’rk, (3)

to describe continued deformation.

The strain-rate measure chosen in (3) is the convected derivative of Green’s strain tensor
which, with the present choice of reference configuration, may be referred to particle velocities v;
through

2d; = vy + vy @)
The elastic compliance tensor My in (3) is left unspecified except for the assumption of

ij «> kI symmetry (apart from the ordinary symmetries) and the scalar 8 equals one when plastic
flow occurs and zero otherwise. The unique unit normal w; to the yield surface in stress space
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and the scalar measure h of the rate of strain-hardening at a generic instant are in general
functionals of the deformation history.

The conjugate stress-rate measure introduced in (3), being the convected rate of the
contravariant symmetric Kirchhoff (second Piola-Kirchhoff) stress, does not lend itself easily to
a physical interpretation. It is related to the nominal stress rate, though, through

=" —o% vl )
which, due to the existing symmetries, leads to a convenient consequence; a potential
U =3+"dy + 0"v",00y), ©
being a quadratic function of velocity gradients through (3) and generating

i oU
§ = m, (7)
may be introduced. This feature has far-reaching consequences when it comes to the solution of
standard boundary value problems.

In a general situation, when determining the ‘tangent moduli’ appearing in (3), the definitions
of particular stress rates must be distinguished. With the present application in mind this matter
might not be crucial as metal structures ordinarily buckle in modes with rotations dominating
over strains and diverse commonly adopted objective stress-rate measures differ only through
terms of type stress times strain-rate. When ‘stretching’ effects are important this issue needs due
consideration though as detailed by Hill[8].

In a standard boundary value problem when the nominal traction-rate F; is prescribed on part
of the body surface S and particle velocities on the remainder, an obviously sufficient condition
for uniqueness of continued deformation under an infinitesimal change of the boundary
conditions, is

I=]AF%wdS#0 (8)

where A denotes the difference between two solutions to the field variable following and
Fi=ls" )
l; being the current outward unit normal to the boundary surface.

From stability aspects only positive values of I are of interest and by aid of the divergence
theorem and (1) it may be transformed to a volume integral

I=jAﬂAde>0 (10)
or by aid of (7)
I=fA£gAde>Q an
60,-,,-

It is evident from the appearance of (8) that (11) is applicable also for boundary conditions of
mixed traction-rate/particle velocity type.

To investigate the sign of I in a general situation does in nontrivial situations pose an
awkward problem due to the non-linearity of the constitutive equation for material elements at
yield. It was shown by Hill[9], however, that for common elastic-plastic solids a more practical
though weakened form of (11) may be obtained by adopting a potential U, being constructed
from the plastic loading branch of (3) for material elements at yield. For such a ‘linear comparison
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solid’, which formally has the same properties as an anisotropic hypo-elastic solid in Truesdell’s
terminology, (11) reduces to

U
I =fa—1)jfl’j.i dv >0 (12)

as U, is then a single-valued function of the difference between two velocity gradient fields, the
A-symbol being deleted for convenience.
Further by Euler’s theorem for homogeneous functions

1,4=2fULdv>0 (13)

In many practical situations, incidentally all the ones analysed so far in the present spirit and
to the writer’s knowledge, the considered bifurcation modes involve no unloading in plastic sense
implying that inequalities (11) and (13) are of equal strength.

In essence the bifurcation problem now reduces to the search for eigensolutions to be
superposed on the known steady state solution. As was shown by Hill[9, 10] variational methods
are then available and eigenmodes may be found from

51L =0 (]4)

with the field variables (actually formed then from the difference between two fields) subjected to
homogeneous boundary conditions. The amplitudes of the eigenmodes are then bounded from
above through the constitutive restriction of continued plastic loading in regions at yield. It has
been assumed throughout that (3) has a unique inverse and that 7°d; is positive definite so that
incipient quasistatic motion is unique.

When for instance hydrostatic pressure loading p is acting on part of the boundary surface S,,
which is a particular case of a family of self-adjoint boundary conditions studied by Hill[11], (14)
should be supplemented to read

5([ UL dV+f plv* i — L' dS,,) =0 (15)

A BUCKLING CRITERION FOR SHELLS HAVING
AN AXISYMMETRIC MIDDLE SURFACE

When composing the introduced functional I for a thin-walled shell in a membrane state, it
seems justified to assume that continued motion will occur under approximately plane transverse
stress when the transverse shear moduli are of the same order as the inplane moduli. This admits
the relevant part of the constitutive eqn (3) to be expressed (by aid of physical components) in a
reduced form

Tu=andu+ andnt2ad:

T22 = Qiad i + A22d22 + 2023d - (16)

Ti2 = @nisdi + Qasdor + 2asdi- |.
As regards the kinematics the Kirchhoff-Love assumptions are utilized implying that material
elements normal to the reference middle surface remain normal to the deformed middle surface

and do not change their length. In this spirit relevant buckling loads are expected to be well
approximated by a particle velocity field (essentially conserving normals)

Vo = Ua — W, (@ =1,2), v3=w a7
where the in-plane middle surface velocity components u. are arbitrary functions of orthogonal

middle surface coordinates x?, w is the (locally) constant velocity in the normal direction and z
denotes the distance of an arbitrary particle from the middle surface.
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The assumption of vanishing transverse normal strain-rate is in general in contradiction at
least to the assumption of a continued transverse plane stress state. It is possible to remedy this
shortcoming by supplementing the expression for the transverse particle velocity w in (17)
through terms which yield continued vanishing transverse normal stress. When transverse
shearing effects are unimportant the same result may be obtained for the present purpose, in a
customary and perhaps more simple way, by deriving the plane stress form of the constitutive
equation, as in (16), before the potential U, is formed and appropriate velocity gradients
introduced.

At this instant it proves convenient, in case of an axisymmetric shell middie surface, to
introduce the following notation; 6 is the angle between a normal to the middle surface of the
shell and the symmetry axis, ¢ is a polar angle, (1, v, w) are the physical velocity components of
particles on the middle surface having principal radii R,, R, and consequently polar radius
r = R, sin 8. The operators 8/dx =R, ’3/36 and 8/dy = r '3/d¢ (which are not commutative in
general as for compatibility reasons ar/dx = cos 8) are symbolized by superscripts prime and
dotT respectively.

Then by aid of (15), (16) and (17) for a steady membrane stress state (0w, Guy, Oy )

L = f ((au + o)’ + w/R = z(w' = w/RY T +2aulu’ + w/Ri = 2(w' — u/Ry)]

X[ucos@/r+v +wsme/r—z(w +w' cosb/r)+2anfu’+w/R,—z2(w' —u/R\)]

X[uw +v —veos@/r—z(2w —vsin8/r)1+(an+oy)

X[ucos@/r+v +wsin@jr—z(w” +w' cos 8/r)]+2ax

X[ucos@/r+v +wsin@fr—~z(w +w'cos8/r)}[u +0v'—vcos8/r—z(2w — v sin 8/rY]

+anlu +v' —vcos/r—zQw —vsin8/r)T + o

x{[v'—z(w —vsin@/rYT+(w = u/R)Y}+ 20, {u' +w/Ri—z(w' — uiR\Y]

XU —vcosblr—zw")+[v' —z(w — v sin 8/r)]

X[ucos@fr+v' +wsin8/r—z(w” +w'cos8/r)]+(w' —u/R)w —vsind/r)}

+on[(u —vcosB/r—zw 'V +(w —v sinelr)z]) dVv

+J-p[(u cos@fr+u'+v +w/R,+wsin8/r)w

—(w' —u/R)u—(w —vsin8/rvids, (18
where the surface integral should be evaluated at the middle surface.

Guided by the results of Koiter’s{12] thorough discussion of the relative errors introduced
through the approximative character of the basic assumptions in elastic shell theory, terms of the
order |z|/R, and |z|/R: have been deleted in (18) in expressions accounting for the change of
curvature of the middle surface whenever compared to unity. At the present state of knowledge
there seems to be no justification to refine the kinematics of the situation further than this
although it is clear that the resulting approximation rules out buckling modes in which the main
rotation occurs around a normal to the middle surface. Such modes seem unlikely to appear
though in axisymmetric structures which deserve to be labeled shells in any sense.

Integrating the volume integral in (18) in the thickness direction utilizing the metric of the
middle surface and introducing the notation Ay = tay, s = t0ws, K = t7/12 (shell wall thickness

t, not necessarily homogeneous but varying to a small amount though), p = r/R,, application of
(15) yields the Euler equations

+Not to be confused with the earlier introduced symbol for material derivation.
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[IDi{An+n)r—Ancos 8 +rD,(As+ny)l (' + w/RY) _Ri [DAA G+ no)rKD,
1

— ot —prRJ(W —u/R ) +[D:Awr —(An+n,,) cos 8 + rD,Ax]
X{ucosbfr+v +wsin8/r)—pDALK(w +w' cos 8/r)+(D.Awnr

—Axncos 8 +rD,As)u +v' — v cos 8/r) —Ri DA KD, (2w — v sin 8/r)
i
+ (Daliey? + tDynyy Y — v €08 6/1) — iy [0 COS 6 — p(w — v sin 8/r)]

1 -
R D Krw' =0

[rDyA12+(A13+ nxy) cos 8 + DXA|3I'}(H’ + WjR])‘ sin 6(% D.A:KrD, — nx,)

X{w'—u/R)+[rDy(Aznz+ ny)+ Ay €08 8 + Do (Ans+ 1y 1]

X(ucosfir+v +wsin8/r)+(rD,As+ Asscos 8 + D Aur)(u +v' — v cos 8/r)
—Sl—l:fDx(AnJrnx,,)Kr(w“+w’cos ain > (19)

—%QDXABKrDX Q2w — v sin 8/r)+ (Dt + rDyn v’ —sin 8

X (% D KrD, — n,, — prisin 6)(w' —vsin@/r)+n,ycos 0u —vcosb/ry=0

[p(Au+ns)+Ansin g +pri(u’ + w/R) + [Du (A + na )KrD, — D.A,K cos 8D,
+rDyAwKD, +2DA KD, — Dinyr — rDyny + Dono KeD. Xw' — u/R,)
+[DxA 2 Kr — D (A2 + nyy )K €08 8 + 1Dy, (A + 1y, )K + Dy (2An + 1y )K ]
X{w +w cos 8/r)+[pAn+{An+n,)sin 8 +pri{ucos 8/r+ v +wsin8/r)
+(pAiz+ Axnsin 6)u +v' ~v cos 8/r)+(DAnKrD,

—D.AxK cos 8D, + rD,yA» KD, + 2D, A:KrD.Y(2w™ — v sin 8/r)
+ [Dyn KD, — Doty (r + K cos 8D) + rDyyn , KD, — rDyn,, J(w — v sin 8/r)

+ 1ty [plu — v cos 8/r)+ v’ sin 8]+ (Do Kr + Doy, Kr)w” =90

and the associated boundary condition
f ({(Au + nxx[u’ + wlR,—-%(w' - u/R,)’]+Au[ucos 8lr+v +wsin8/r
1
K ... . K . . , .
-—-ﬁ—(w +w cos@r)|+Anlu +v —vcos()/r——i(Zw — v sin 8/r) +nxy(u —vcos@/r
1 1

—--ng w")+pwl2}6u+ {Alg[u' +w/R, —5——?9—9
¥

(w' ”U/Rl)']+(A23+ nxy)[u cos Bfr+v’

+ w sin G/r—K—Sr"LQ(w” +w' cos O/r)] +A33[u' +v' —vcos@/r —§-§rl~n—6(2w' — v sin 9/r)’]

_Ksing

+ nxx[v’ {(w —vsin Ofr)']}Sv + {[»%DxKr(A., + 1., )D;

Kcos#d
r

+ Az

D, —2DyA KD, + ne —% DynxyKer](w’ —u/Ry)

+ [‘—%DXAQKI' +{An+n,)K cos8/r—D,(2A:+n,, )K}
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. 1 K
X(w +w' cos@/r)+ —;DXA.JKrD, +A237cos 9D, —2D,A3; KD,

KcosB

X 2w —vsinf/r)+ [——D nwKrD, + nxy<1 + x)](w' —vsin8/r)

- —:;(DxnxyKr + Dyny Kr)w'' — pu /2}6w +[(An+ nu)KD(w' — u/R)
+ALK(w  +w' cos8/r)+AusKD:(2w —vsin8/r)+ nxwa"]BW’> dy=0 (20)

under the presumption that uniform hydrostatic pressure p acts on the complete exterior shell
surface. In (19) and (20) occasionally for clerical reasons D;, D, have been introduced as symbols
for a/3,, 8/3,, the convention being that these operate on all ensuing factors constituting a term
and for instance 9°w/axdy is denoted by D,,w or alternatively w"'.

A crucial test at this stage is naturally an examination if any physically meaningful results may
be obtained when interpreting the dynamical parts of the boundary condition (20) in terms of
stress-rate resultants and stress couples. It is customary in the literature on elastic shells to derive
resulting dynamic variables by aid of a virtual work principle based on middle surface strain and
curvature change as kinematic variables. In the present three-dimensional approach however, no
specific appeal has been made to separate but additive energy contributions of middle surface
stretching and change of curvature and therefore, following an approach similar to the one
out-lined by Sewell[23] for a corresponding plate problem, a reversed procedure is adopted by
introducing tentatively the stress rate resultants

t/2
ne® :J’ §°f dz 21
—t/2
and stress couples

t/2
muﬂ =f eﬁs(§a62+su6W)dZ (22)
—t/2

where €. is the two-dimensional permutation tensor.
Eliminating the transverse shear forces the conditions for translational balance then read in
physical components as obtained from static equilibrium considerations

orfi..  on 1 /orm,, om w u

e il +— ( 24—, >+ (———)=
rox +ay — Ry, cOS 8/r A 3y My COS 8/r)+p R 0
1 arr'zx, ony, sin O(Brmxx oMy . ) (aw . )
—_ + x — + _— =
T ox ay Fiyx COS 8/r — P e 3y My, cos B/r)+p P vsing/r

: . . b (23)
Fixx /R + Ry, sin (9/r—1i<arm"’+ramyy li(%+r3mw¢
ax\ dx ay

+ My
Myx COS 6) F 3y 3y

— M,y COS G>

+p( +ucos@/r+dv/dy +w/R,+w sin 0/r>

J

stressing once more the fact that the dependent variables derive from the difference between two
solutions (and consequently any terms containing p, which is prescribed, cancel in (23)).

By aid of (5), (16), (17), (21) and (22) the Euler equation (19); may then be exactly recovered
from (23)s. As regards the remaining equations (19), and (19),, these may be recovered from (23),
and (23), respectively only through multiplication of the integrand in (21), when evaluating #,,
and #,, to be inserted in (19), by a factor (1 — z/R,) and correspondingly a factor (1 — z/R,) when
it comes to (19).. These operations are however irrelevant in the present approximation.

The boundary condition (20) may then be interpreted to the same order of approximation as

O

§ [(flxx pw/2)éu + h.,dv + (qx P —pu/2>8w + (AW — mx,)6< )] dy=0 (24
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when introducing a transverse shear stress resultant formally defined as

. My | 0Ny, . .
=2 T2 (Fy + il
q i P (M. +my)cos 8/r (25

It is self-evident from the basic assumptions introduced above that this shear force rate is not
consistent with the utilized particle velocity field through the constitutive equation but indeed
(25) is an equation for rotational balance derivable from static considerations and it should be
further noticed that the stress-rate resultants and the pressure p are not independent in (24) but
related basically through (2).

Summing up then, the Euler eqns (19) together with the boundary condition (20) in general
constitute the basis of a physically consistent and mathematically well set two-dimensional
eigenvalue problem generating the magnitudes of critical loads for shells which buckle in modes
being at least approximately covered by the adopted class of particle velocities (17). There seems
to be one exception though due to the awkward presence of the p-dependent terms in (24). Thus
for the particular case of a shell subjected to hydrostatic pressure and with ends free to move in
meridional and transverse directions, there is an unhappy mixture of dynamical and kinematical
variables in the boundary conditions (24) if stretching effects are of importance.

As regards the magnitude of errors involved there is no justification to discuss those inherent
in the general set of shell equations except for specific load distributions as concluded by
Niordson[14] in an isotropic, elastic context. Under the present circumstances such a discussion
must also include the role of the (anisotropic) material properties and this is not attempted in
general here. Instead the intrinsic errors in the governing equations are discussed in relation to a
specific problem viz a circular cylinder under axial compression. This case has been dealt with
extensively for elastic materials.

A CIRCULAR CYLINDER UNDER AXIAL COMPRESSIVE LOAD

For a right cylinder shell of uniform sheet thickness ¢ and middle surface transversal radius of
curvature q, suffering under a current compressive stress o, the degenerate general rate equations
(19) may be arranged in the symmetric fashion

Liu+ Lo +L|3W =0
Lou+ Loy + L23W =0 (26)

Liu+Lunv+Lisw=0

when introducing the operators
Lyy=(an—0)Du« +2a13Dxy + asD,,

Li;=a3Du +(a12+ a33)Dsy + aDy,
1
L= E(alsz + ax3Dy)
Ly=(as—o)(1+ K/az)Dxx +2ax»D.y + anD,,
1 K
L= E(aan + azsz) - E[alllixx + (2(133 - O')Dxxy + a23nyy]
L= aas/a’ + K{(ay — 6)Dsexx + 413Dy + Qa2 +4as— o)
X Dxxyy + 4(123nyyy + azszyyy] + O‘Dxx.
The boundary condition (20) reduces to
§ ({[(a” - (T)Dx + alaDy]u + (alsz + a,;Dx)v +%w}8u

+ {(aISDx + asDy)u + [axD, +(as— o)1+ K/az)Dx]v
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I
_ %[alngx - a:;(—K— - Dyy) +(Qas- U)ny]w}av

- K{ - %[aBDxx +2as—o)Dy v + [(al‘ = 0) Do + (12 + 4033 = 0)Dsyy

o

K
+[(an - 0)Des + auaDyy + 2a13D,y]w}8w’> dy =0. o

1
+ 4a13Dxxy + 2(123Dyyy + DX:IW}SW + K{ _Z alngU

An interesting comparison between critical loads predicted from various theories in case of
isotropic elastic shell material has been recently offered by Dym{15, 16]. Except for some of the
pre-stress terms in L,; in (26) these equations are very similar in their structure to those
attributed to Fliigge and Koiter-Budiansky. The difference actually derives from terms which
depend on the smaliness of t/a and by themselves differ in those two theories. Both these sets of
equations were shown by Dym to be able to predict expected buckling behaviour also in the
limiting cases of very short and very long shells.

To solve (26) and (27) for a general case, accounting for the influence of all constitutive and
geometric parameters, seems to be a formidable task and also of dubious practical value as it is
well known that for instance imperfections in the cylinder geometry are quite decisive when
failure occurs in the elastic range. A facilitating procedure which linearizes the equations
governing the search for the eigenvalues of (26), (27), would be to delete all o-dependent terms in
(26) except for the very last one in L;; together with all terms of the type differing in the Fliigge
and Koiter-Budiansky equations. The governing equations then reduce to what is known in the
elastic context as the Donnell approximation. Performing such an operation is not without
ambiguity though as it is known for instance that for long cylinders which buckle in a column
mode the Donnell approach overestimates the buckling load by a factor of two. This error is
mainly due to the deletion of the o-dependent term in L,,. A deletion of the stress-dependent
term in L, is of minor importance which is apparent from the structure of (18) bearing in mind
the assumption of positive definiteness of the constitutive matrix. A similar conclusion has been
drawn earlier by Koiter[17] in an elastic context.

However the Donnell approximation seems to be applicable for shells which buckle in shallow
modes and especially for cylinders of certain length to radius ratios 0, 1= L/ma < 10, m being
the axial wave number, it was found by Dym for some boundary conditions that all the competing
theories indicated so far gave approximately the same result. In order to achieve some explicit
results for different boundary conditions and constitutive properties in the present case, without
too cumbersome algebra, it seems reasonable to conjecture that a corresponding Donnell
approximation in the plastic range would yield relevant results at least for some particular shell
geometries,

Introducing the Donnell approximation into (26) yields

a’u a’u 8%v 1 ow
dn—=+ ass—+ + — ——=
PPN ay’ (@ a33)axay+a'2a ax 0
a’u 3%v 8%v 1 aw
At anyr—+ @n -+ a»n-— ——=
( 12 33)3){0)’ Aass axz axn 6y2+ a22a 3y 0
19 14 8t a* ' 9
u v w w
du—"—+ pn——-+ — —r
12a ax azza ay K[a” ax4+(2a12+4a33) ax2ay2
a‘w w 3w
+ azz—ay4]+ 022—a2+ a—axz =0

J

when leaving out any terms accounting for interference between normal stresses and shear
strains i.e. setting a3 = a»s =0 in (26).

The associated particular boundary conditions singled out for study reduce in this
approximation to
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a a
a!‘£+ 9;2‘(,;;‘7)‘30, 29
v=0 (30a)
or alternatively
du
> ax =0, (30b)
’w
o 0, (31
w =0. (32)

Physically the dynamic boundary condition (29) implies that the axial load rate is controlled
(in contrast to the conjugate displacement rate). The condition (30b) is a relaxed form of (30a)
corresponding to in-plane shear stress free ends of the cylinder (in a practical situation the axial
load is then imagined to be introduced through some shear weak member). This option of in-plane
boundary condition is left open as it is well known from earlier shell studies and also from the
three-dimensional theory of uniqueness of finite deformation of different solids that the
possibility of bifurcations is very sensitive to the manner in which external loads are introduced.
Finally (31) and (32) imply simply supported ends. It is evident, though, that for instance (32) is
not consistent with the assumption of a continuously varying steady membrane state except fora
material which undergoes no lateral contraction during uni-axial loading. It has been shown,
however, by Almroth[18] that this approximation as regards the resulting buckling stress is
negligible at least in a corresponding elastic situation.

Now from (29): and (29). the in-plane velocities may be solved as

1y 3w 3w
Lu = -——a-(a;zg?‘“ a» W) 33
171 } 3’
Lv= —;[a—”(anan— a%z alzagg)ax ay + sy —é‘;};] (34)
where the operator L is defined by
3t 1 3 3
L =a||EX—4+;3‘3‘(anazz"a%2 2012033) 6y2+a”6y
Introduction of this result into (29); vields a single equation
3w i 3’ 1 a'w
L{K[an r3 +2(a|2+2033)—+ as ayw]+%a‘;}+?"§(auazz“‘a?2)‘a;7'=0 35

for the eigenvalue problem.

For elastic-plastic strain-hardening materials having incremental elastic cubic symmetry,
referred to the introduced stress and strain measures, and a smooth yield function, the introduced
moduli may in the case of plastic loading be expressed as

an=(1+ K‘Léz +47K}L?2)E[’d, an=(v— K;L1;;L22+4V7K}L§2)Eid,
an= —2ykppn + vp)Eld,  an =1+l +4ycp)Eld, (36)
A= —2ykprvpu + p22)Eld, asm=vy[1-v ot K(M nt :“22 +2vunupn)lEld

where

v=GJ|E, x=E/h
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and
d=1-v+k[ph+pd+2vpnpus+2y(1- vHuhl;
E, v and G being elastic constants in customary notation.

The main reason for introducing three independent elastic constants is simply to retain the
possibility to separately investigate the significance of the magnitude of the in-plane shear
modulus as regards the resulting buckling load.

To simplify the notation it is convenient to introduce the dimensionless moduli

an=1+ K}ng, Q2 =V — K fha2, an= 1+ K#%\, Qa3 = dG/E, (37)
as in effect w,, has been set to zero already in (28), and the dimensionless variables

w=wla, £¢=Aixla, n=Ayla, 2B =Ac|E, A=(da’/K)" (38)

The governing eqn (31) then simplifies to

. tw
L'L" + 6§‘f=0 (39)
where L’ is the dimensionless form of L and
) 84 34 34 (92
L =a,1—5g+2(a12+2a33)6§ 3 ] +a22 §4 +2ﬁ§ (40)

Following a procedure outlined by Hoff and Rehfield [19] for a corresponding elastic situation,
w may be formally solved from (39) as

W= (%)_41,'1,"»0 @1

Introducing this result into the boundary conditions (29) through (32) then yields

-2 2 —4
{analz"[allazz—%(anazz—aﬁz alzaaz)](a&g) 62+a12a22(aa§) a }L”-=0 (42)

an
[azz( a‘;)’éﬁaé(a”an— an— ama,;)( 6)’2 P g]L” p =0 (43a)
%fg =0 (44)
w=0 45

Now a solution to (39) is sought for in the form

W = erErien (46)

where p is in general a complex number and e(da’/K)"
aid of (38).

The characteristic equation associated with (39) then becomes

is the circumferential wave number by

1
[aup‘ “&‘3:(&11&22“ at— Zanzazs)ezpz + 02264]{ax1p4 ~Aan+ Zasz)fzpz + anet + Zﬁp2] + P‘
=0. @nN
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For the degenerate isotropic case the roots of this equation have been given by Nachbar[20],
curiously enough without any obvious indication of the solution method.
It is possible though by introducing the polynomial

|
P= OIHP4 _a_‘(ﬂfuazz— @i 2a12a33)62p2 + azzed (48)
33
and the constant
1
b =B+ (@@~ ats~danan —dai)e’ (49)
Q33

to rearrange (47) to yield
P*+2bp°P +p*=0 (50)
The formal solution for P is then
P=(-bxiV[I-b"p’ (51)

and it is evident from the appearance of P in (48) that all the eight roots may be explicitly found.
It may be readily seen that there are two distinct roots related to either sign in (51) and the
remaining roots may be found as the negative and complex conjugate values of these.

To facilitate further discussion the cylinder length is in a strict sense assumed to be
semi-infinite. This means that only roots of (47) having negative real parts are of interest. From a
practical view-point, however, the results may as well apply to cylinders of finite length and of
such geometry that the interference between the ends is negligible. Incidentally it was found by
Batterman{2] in his axisymmetric study that the length of the cylinder played a minor role as
regards the resulting buckling load in case of free ends.

Denoting the solution to (39) by

4
B =S A entrie (52)
i=1

and introducing the polynomials

Q= aups = Aaw + 2an)e 2p52 +ane*+ 2,3}):‘2
i=1,2,3,4 (53)

the boundary conditions (42) through (45) may be expressed as

2 Ai{axu&12954 + {fxnanz —Z‘:"E(auazz - 01212 - a12a33}€2pi2+ 05120!2264}% =0 (54)
pyn 33 i
4 1 Q
2 A [_(anazz Tk 11120133)17.'2 — Q22€ 2]_‘: =0 (55a)
=1 Qa3 Di
4
> A Q_y (55b)
i1 i
4
Z A:pi2 = (56)
i=1
4
> A =0. (57

From the definitions of P and Q, eqns (48) and (53) respectively, it follows that
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Q=P +2bp* (58)
and consequently by aid of (51)
Q= =iVIl-bDp’. (59
Introducing the notation
c=b+iv(1-b? (60)

and denoting the four roots p; of interest by g, r, §, F where the bar denotes complex conjugation,
then from (59)

Qi=cq?, Q:=cr’, Qs=¢q°, Q.=cF. (61)
By aid of (48), (51) and (60) the boundary conditions (54) through (57) reduce to

(A1 + Az)[— a.C +(an(122— (1%2)62]() + (Az+ A4)[_a12C + (anazz— afz)éz]é =0 (62)

(At At Ast A4)£;(alla22 — ah— anam) - a2262(éq]—f+%+Aq—3f+é';—E> =0 (63)
Aicq + Ascr + AsCG + Ascr =0 (63b)
AP+ Ar+ AsGP+ AP =0 (64)

At Ar+As+A=0 (65)

Remembering that ¢¢ = 1 from (60), the eigenvalue equations for the two different cases then
readily follow as

lqz—r2|ImcImq—fr—2=0 (66a)

for the rigid variant of the boundary conditions (63a) and
@ —r}ImcImic(g+7)]=0 (66b)
for the relaxed form (63b) provided € + 0 in both cases. In (66) Im denotes the imaginary part of

the quantity following.
In a general case g+ r and as g and r are solutions to

1
a11P4— [E(allazz— a?z—2a12a33)€2~ c']p2+ ane*=0 67

from (48), (51) and (60), q°r” is a real positive number if e is separate from zero. Consequently the
only solution to (66a) is

Imce =0. (68)

The corresponding eigenvalue is then from (49) and (60)

1
B =1 —Ea—”(anazz— a2~ danas—4ai)e’ (69

The buckling load thus derived decreases with the circumferential wave number if
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2033 < (@n1022)"” — @15, which in a purely elastic situation corresponds to the delicate condition
G < E[[2(1+v)]. This is an interesting effect indicating the significance of the in-plane shear
material properties. Remembering, however, the approximative character of the rate equations
utilized to arrive at this result, no far-reaching conclusions are drawn at the present moment but
the matter should be worthy of a more profound investigation based on the complete set of shell
equations.

In case of isotropic elastic properties (69) yields

K

1
B =1+m<§—3p«n[£22>€2 (70)

where the deviatoric property pw = 0 has been utilized. As the last term in (70) then increases
with the circumferential wave number it is clearly of interest to investigate the axisymmetric case
which however must be treated on its own merits in the present derivation of eigenvalue
equations. It is readily shown from (28) through (32) that for a cylinder of finite length the critical
loads for the two cases coincide and that 8 = 1 corresponds to a pure sinusoidal buckling mode if
a large number of buckles in the axial direction is anticipated. The lowest buckling load is then
from (38)

_ Et
TV®a{l =+ kE—(1—20)pupall ™

Ter

(n

This result has been obtained earlier from somewhat simpler arguments by Ariaratnam and
Dubey{3], who also departed from Hill's variational principle in their analysis. These writers
concluded from their final approximation that the critical load dependence of the circumferential
wave number was a function of the ratio between Young’s modulus and the tangent modulus in
conflict with the result reached above. The complete dynamic boundary conditions imposed were
not explicitly stated in their analysis but were perhaps meant to be analogous to the present ones.
Moreover their treatment was formally applicable to shells of finite length and bearing in mind the
approximations introduced above this detail is not pursued further.

Ariaratnam and Dubey systematically investigated the sensitivity of the critical load to the
direction of the yield surface normal, relevant to an anisotropic solid (as given in the present eqn
(71)). The dependence is significant and as may be seen from (71) this effect is closely connected
with the prevailing value of Poisson’s ratio and particularly when v =3 it vanishes formally.
Obviously though no far-reaching conclusions may be drawn for the limiting incompressible case
remembering the kinematical restrictions introduced above.

Except for the solution (69) relevant to the rigid form of the boundary conditions, the only
solution to (66b) is

Im [c(G+7)]=0. 72)

The exact solution to this equation may not be easily found. In order to arrive at an
approximate solution it might be noticed that in a practical situation ¢ may be expected to be
small compared to unity as by definition ¢(da’/K)"* must be an integer from (38). Under the
additional assumption that ke < 1, after lengthy but straightforward calculations by aid of (48),
(49), (51) and (60), (72) may be solved to first order to yield

B =%(1 + {1 F VIl + opd)]+ = (5 u)unmz]}ez) (73)

when the elastic part of incremental deformation is assumed isotropic and provided that, as
earlier indicated, 8# 1 and € #0.

For this case the magnitude of the critical load increases with € but the lowest value amounts,
e.g. in the case of linear strain-hardening, to only about one half of that found for the rigid
boundary conditions as there is a remarkable insensitivity to the circumferential wave number in
(73). To elucidate on this matter (73) may be rewritten as
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B =3(1+6n% 74

where n is an integer greater than one as a column buckling mode is out of the discussion for
reasons indicated above.

In case of common metals, cylinders ordinarily fail in the plastic range if a/t <100 (say).
Adopting this ratio and typical values v =1/3, pu= —2u2=2/1/6, then 8 in (74), which
increases monotonically with k = E /h, still only slightly exceeds 0-01 if « = 10. In this situation
ke><0-02 for n =2.

Quantitatively, however, this reduced buckling load may not be accepted immediately without
reservations. It goes without saying that the errors involved in the approximations introduced
when arriving at any solution must be checked by aid of the original unreduced equations.
Furthermore in a real situation there always exist edge zones in which the character of the stress
distribution may not be determined from a two-dimensional theory.

A remark pertinent to the present case of relaxed boundary conditions has been given by
Koiter[17] who demonstrated by a simple argument (related to deletion of a o-dependent term
corresponding to the one in L., in (26) in the present treatment) that the Donnell approximation
may underestimate the critical load for short elastic shells (L?/(at) < 1). It was shown in a later
numerical study by Simmonds and Danielson[21] that except for very short and very long
cylinders, the Donnell approximation generates accurate results for the buckling load in the
elastic case. However as these writers remark this result might be fortuitous and attributable to
the weak dependence of the buckling load on the circumferential wave number as is also clear
from (73) above. It is evident though that the particular form of the boundary conditions is of
considerable interest in the present context, as was also found by Batterman|[2].

Before the solutions may be fully accepted it must be proved that the assumptions underlying
the adoption of a linear comparison material are fulfilled implying a stable bifurcation. That this is
indeed the case for the present boundary conditions is clear immediately as the amplitudes in the
eigensolutions found may always be chosen small enough that loading in a plastic sense prevails
everywhere in the cylinder when these eigenfields are superposed on the steady state
homogeneous axial compression mode.

The rigid-plastic solution may not be recovered from the present analysis but this case must
be treated on its own merits. This is due to the fact that when the ratio E/h — « only the restricted
class of velocity fields compatible with the flow rule is admissible and the validity of the
variational principle employed above is ruled out as the stress-rates are not derivable from a
potential any longer. Evidently overlooking this restriction in a similar investigation of a cylinder
subject to torsion, Neale[22] found a finite critical load in the rigid-plastic case although it was
shown by Hill[23] that the deformation mode of a rigid-plastic bar in torsion is always unique.

For the present case the general velocity field admissible under a uniaxial stress state has been
given by Prager[24] in case of an isotropic smooth yield function. In the present notation this field
yields for the middle surface displacements

u = Axa cos ¢ + Bxa sin ¢ + C(a®+2x%) + Dx

v =—4a*—2x")(A sin ¢ ~ B cos ¢) (75)

= —ia®+2x*)(A cos ¢ + B sin ¢) —2Cxa —?a

where A, B, C and D are mode amplitudes.

As may be seen from (75) this field admits only column buckling types of modes of no shear
distorsion and the boundary conditions may only be approximately fulfilled. Suffice it to say in
this connection that an analysis based on Prager’s field has been carried out by Hill[23] for a
rigid-plastic column.

CONCLUSION

Despite the merits of the fundamental principles laid down by Hill for elastic-plastic solids,
they seem to have been utilized only to a small extent in the solution of problems of engineering
significance. The generation of equations valid for idealized one- or two-dimensional cases must
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by necessity be an approximate procedure which is a common feature to any approach though.
Some of the difficulties which may be encountered have been dwelt upon above and they have
proved to be mostly of a technical nature leaving a minimum of assumptions to intuition once a
class of particle velocity fields has been chosen. It seems quite plausible, in the present context,
however, that still more refined shell equations may be derived by a more exhaustive utilization
of the basic results won in modern elastic shell theory in combination with introduction of the
idea of an elastic-plastic linear comparison solid. At the present moment a bifurcation theory for
two-dimensional continua comparable in rigour and generality to Hill's three-dimensional theory,
seems to be lacking.

Even for the very simple geometry and loading conditions prevailing in the illustration dealt
with above computational difficulties were met with in the solution procedure. Under more
complicated circumstances when even an analytical solution to the steady state may not be hoped
for and numerical methods must be introduced from the very start, the access to a rigorous
variational principle is of great value. For instance in shell problems, when bending stresses are
of significance, the relevance of the common kinematical assumptions remains in severe doubt
when it comes to strain-hardening solids and a three-dimensional approach may be necessary
particularly when transverse shear effects are of importance. Tentatively such problems may be
treated with success through a finite element method based on the variational principle and
employing elements which may be expected to be in an approximately homogenous hardening
state under the specific circumstances prevailing. Some of the main features appearing in such an
approach are neatly exposed in a recent study by Needleman[25] of thick-walled spherical shells
subject to internal pressure.

Whether the class of particle velocity fields commonly dealt with in elastic buckling theory,
will be applicable also in elastic-plastic situations will to a high degree depend on the particular
shell material properties. To render error estimates possible the access to three-dimensional
analyses are necessary but very few such are available. The matter may be illustrated by some
results of Strifors and Stordkers[26,27], who have analysed, from a rigid-plastic point of view,
two specific problems which fall in the present class. For a thick-walled circular cylinder under
external hydrostatic pressure (when the particle velocity field generated by the flow rule is quite
versatile) these writers found that a simple tangent modulus formula applied in the thin-shell limit
while for a corresponding spherical case buckling was ruled out by rigid-plastic theory when a
non-singular yield function was adopted. This latter unrealistic finding is due to the prevailing
infinite modulus for plastic incremental shear strain referred to the steady state principal stress
directions. The role of the in-plane shear modulus was shown to be of significance also in the
cylinder problem dealt with above and it is well-known that the same state of affairs prevails
when dealing with buckling of plates. Thus a proper choice of constitutive equation is of
paramount importance. The diplomatic option of shear modulus in Bushnell’s earlier mentioned
problem setting seems very sensible especially when seen in the light of Budiansky’s[28§]
discussion of the physical soundness of deformation theories.

The discussion of plastic plate buckling has centered very much around the question whether
a corner develops on the material yield surface or not. An impression of confusion remains,
though, as to why the application of non-classical constitutive theories should be particularly
successful in a field where other kinds of second-order effects are of fundamental importance. As
remarked by Phillips [29] this issue might not be crucial as a small initial curvature of a plate will
cause deviations from idealized strain-paths under loading. As a consequence drastic changes
may occur in the incremental properties for solids which develop pointed yield surfaces. The
same effect may be caused also by excentric loading and the arguments apply to shells as well.

Accounting for these constitutive aspects and the role of the boundary conditions as dwelt
upon above, might still not suffice to explain the notorious and embarrassing discrepancies
between obtained theoretical and experimental results for buckling of shells in a plastic
fundamental state. The influence of boundary constraints on the steady stress state is an
important aspect which ought to be kept in mind when comparing experimental results and
theoretical results based on mathematical models which only artificially simulate conditions
prevailing in a laboratory test. In a numerical study of buckling of cylindrical sandwich shells,
having stress-strain characteristics pertinent to an aluminium alloy, Murphy and Lee[30] found
that bending waves causing plastic unloading developed during steady global compression. The
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determined collapse loads (maximum loads) were in good agreement with experimental results at
least for axisymmetric buckling modes. Incidentally this proved to be the case also for
bifurcation loads associated with cylinder ends free in Batterman’s sense.

Furthermore in a real situation such features as presence of residual stresses and geometrical
non-linearities introduced through imperfections may be highly decisive and a buckling value
theoretically estimated from a bifurcation analysis may not be of much practical value.
Bifurcations in elastic-plastic solids will mostly occur under increasing external loading and
consequently in such cases the systems are not sensitive to geometric imperfections in the sense
common in the theory of elasticity. Despite this formal insensitivity when plastic effects are
significant, initial imperfections might as well be the latent major cause of faiture. This conclusion
may be drawn especially from a recent study by Hutchinson[31)}.

For two simple systems, a compressed idealized column with a non-linear spring support and
an externally pressurized spherical shell, which are both imperfection-sensitive in the elastic
range, Hutchinson showed that the increase in load-carrying capacity, after a bifurcation has
occurred during the deformation of a perfect system, is not significant in the plastic range. When
initial imperfections are present the load-carrying capacity is substantially reduced as for
instance in the shell problem, an initial imperfection in the middle surface geometry of around 0-4
times the shell thickness, lowers the maximum load by a factor of two for particular but realistic
shell parameters. In an approximate, though apparently quite accurate, study Neale [32] found
similar features for cylindrical shells under torsion.

Thus it would seem to be rewarding and also necessary to investigate if such circumstances
prevail e.g. for the cylinder problem discussed above before making any close comparison
between theoretical and experimental results. For a particular case some insight is already
available from Murphy and Lee’s[30] discussion of a sandwich shell of initial geometry
characterized by imperfections in a diamond shape pattern. As remarked by Hutchinson[33], in
practice there might also exist situations when, due to the presence of geometric imperfections,
real cylinders buckle undergoing purely elastic deformation when bifurcations would be expected
in the plastic range only in the case of perfect geometry.
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